% pivot_longer(cols = 2:6, names_to = "type", values_to = "value") %>% mutate(x = replace(x, x == -99, NA)) %>% filter(flyer == 0|flyer == 1) %>% mutate(flyer = factor(flyer), stars = factor(stars)) data1[data1==-99] = NA mod1 = lm(enj ~ value, data = data1) summary(mod1) ggplot(data = data1, aes(x = value, y = enj, color = flyer))+ geom_point()+ geom_smooth(method = "lm") library(lme4) mod2= lmer(enj ~ value + flyer + (1 + flyer | stars), data = data1,control = lmerControl(optimizer="bobyqa")) summary(mod2) bruceR::model_summary(mod2) library(broom.mixed) glance(mod2) tidy(mod2) augment(mod2) augment(mod2) %>% ggplot(aes(x = value, y = .fitted, col = stars)) + geom_line() augment(mod2) %>% ggplot(aes(x = value, y = .fitted, col = stars)) + geom_point(data = data1, aes(value, enj))+ geom_abline(intercept = fixef(mod2)[1], slope = fi"> % pivot_longer(cols = 2:6, names_to = "type", values_to = "value") %>% mutate(x = replace(x, x == -99, NA)) %>% filter(flyer == 0|flyer == 1) %>% mutate(flyer = factor(flyer), stars = factor(stars)) data1[data1==-99] = NA mod1 = lm(enj ~ value, data = data1) summary(mod1) ggplot(data = data1, aes(x = value, y = enj, color = flyer))+ geom_point()+ geom_smooth(method = "lm") library(lme4) mod2= lmer(enj ~ value + flyer + (1 + flyer | stars), data = data1,control = lmerControl(optimizer="bobyqa")) summary(mod2) bruceR::model_summary(mod2) library(broom.mixed) glance(mod2) tidy(mod2) augment(mod2) augment(mod2) %>% ggplot(aes(x = value, y = .fitted, col = stars)) + geom_line() augment(mod2) %>% ggplot(aes(x = value, y = .fitted, col = stars)) + geom_point(data = data1, aes(value, enj))+ geom_abline(intercept = fixef(mod2)[1], slope = fi"> % pivot_longer(cols = 2:6, names_to = "type", values_to = "value") %>% mutate(x = replace(x, x == -99, NA)) %>% filter(flyer == 0|flyer == 1) %>% mutate(flyer = factor(flyer), stars = factor(stars)) data1[data1==-99] = NA mod1 = lm(enj ~ value, data = data1) summary(mod1) ggplot(data = data1, aes(x = value, y = enj, color = flyer))+ geom_point()+ geom_smooth(method = "lm") library(lme4) mod2= lmer(enj ~ value + flyer + (1 + flyer | stars), data = data1,control = lmerControl(optimizer="bobyqa")) summary(mod2) bruceR::model_summary(mod2) library(broom.mixed) glance(mod2) tidy(mod2) augment(mod2) augment(mod2) %>% ggplot(aes(x = value, y = .fitted, col = stars)) + geom_line() augment(mod2) %>% ggplot(aes(x = value, y = .fitted, col = stars)) + geom_point(data = data1, aes(value, enj))+ geom_abline(intercept = fixef(mod2)[1], slope = fi">
library(tidyverse)
data = read_csv("<https://uoepsy.github.io/data/dapr3_2324_report.csv>")
data1 = data %>%
pivot_longer(cols = 2:6, names_to = "type", values_to = "value") %>%
mutate(x = replace(x, x == -99, NA)) %>%
filter(flyer == 0|flyer == 1) %>%
mutate(flyer = factor(flyer), stars = factor(stars))
data1[data1==-99] = NA
mod1 = lm(enj ~ value, data = data1)
summary(mod1)
ggplot(data = data1, aes(x = value, y = enj, color = flyer))+
geom_point()+
geom_smooth(method = "lm")
library(lme4)
mod2= lmer(enj ~ value + flyer + (1 + flyer | stars), data = data1,control = lmerControl(optimizer="bobyqa"))
summary(mod2)
bruceR::model_summary(mod2)
library(broom.mixed)
glance(mod2)
tidy(mod2)
augment(mod2)
augment(mod2) %>%
ggplot(aes(x = value, y = .fitted, col = stars)) +
geom_line()
augment(mod2) %>%
ggplot(aes(x = value, y = .fitted, col = stars)) +
geom_point(data = data1, aes(value, enj))+
geom_abline(intercept = fixef(mod2)[1], slope = fixef(mod2)[2], lwd = 2)+
geom_line()
bruceR::model_summary(mod2)
plot(mod2, type=c("p","smooth"))
plot(mod2,
form = sqrt(abs(resid(.))) ~ fitted(.),
type = c("p","smooth"))
library(sjPlot)
tab_model(mod2)
bruceR::HLM_summary(mod2)